Tag Archive for: sustainability

The Escola Europea Leads Executive Port Management Course, Sharing Innovation and Sustainability with Ports in Brazil and Angola

The intensive course successfully concluded this week, contributing to the training of port leaders for a sustainable and technologically advanced future in Brazil and Angola.

The Executive Port Management course for port executives from Brazil and Angola, which took place in Barcelona from February 19 to 23, 2024, ended on a high note, leaving a significant mark on the international port industry. With a focus on port strategy and sustainability, the course was a melting pot of knowledge, experiences, and advanced management practices, aimed at fostering innovation and efficiency in the port sector.

Organized by the Escola Europea, an entity recognized for its excellence in training in transport and intermodal logistics, and with the support of FAPEU (Foundation for Research and University Extension), the Federal University of Santa Caterina, and CIDESPORT (International Congress on Port Performance), the course was attended by executives and senior officials from prestigious institutions. Among them were representatives from UNISUL/FAPEU, various professionals from the Port of Paranaguá, members of the Paula Souza Center – FATEC Americana, Port of Suape, and the Dock Company of Bahia (CODEBA), as well as executives from the Terminal Management Society, S.A. (SOGESTER) of Angola.

The programme was designed to cover critical aspects and global trends of international trade and maritime transport, port governance, the application of port strategies, and their commitments to environmental, social, and economic sustainability. Participants delved into the management of terminal concessions, nautical services, and the improvement of port hinterland intermodality, all within the vision of ports as engines of growth and sustainable development.

A highlight of the course was the series of organized visits to critical infrastructures, which included port services such as pilots, moorings, and Marpol services (TMA); logistical services at railway and vehicle terminals Autoterminal, the Logistics Activities Zone, the BEST container terminal, as well as the nautical business through a visit to the Marina Barcelona 92 complex. These practical experiences allowed attendees to observe the application of theory in real environments and understand the importance of the port community and its development with the energy transition, port digitalization, port-city relationship management, as well as environmental quality control.

Innovation was also a main driver of the training with the aim of designing strategies that integrate technological innovation and sustainability, preparing leaders to address current and future challenges of the industry. Additionally, the management of safety and cybersecurity, key elements in maintaining the global supply chain, was addressed.

The closing ceremony, which included the awarding of diplomas, reflected the commitment of the Escola and the participants to excellence and continuous improvement. The success of the course is measured not only in the knowledge imparted but also in the bonds created among professionals, which will surely lead to joint initiatives and future projects.

Escola Europea Contributes Expertise in Advancing Maritime Trade at ICPFZ 2023 Conference in Libya

The International Conference for Ports and Free Zones (ICPFZ 2023), held under the patronage of Abdul Hamid Dbeibeh, the Prime Minister of Libya, convened industry leaders and experts to deliberate on elevating Libyan Ports and Free Zones amidst evolving global trends. The conference, organised by the Arab Academy for Science, Technology and Maritime Transport and held in the Misrata Trade Free Zone, themed “The role of modern global trends in enhancing Libyan Ports and Free Zones competitiveness,” addressed pivotal aspects shaping the maritime trade and the maritime transport industry.

At the forefront of this esteemed gathering were Eduard Rodés and Marco Muci from the Escola Europea, renowned for their dedication to fostering sustainable practices and innovative solutions within the maritime sector. As speakers at the conference, their insights shed light on pivotal areas of advancement for ports and logistics sectors in Libya, based on the research and experience gathered by the Escola Europea.

Escola Europea’s Eduard Rodés addresses industry leaders at the ICPFZ 2023 Conference in Libya, sharing insights on enhancing trade efficiency and logistics through innovative solutions

Eduard Rodés, in his presentation titled “Simulating Efficiency: Enhancing Trade and Logistics in Ports and Distribution Centers,” underscored the significance of efficiency simulations in bolstering trade and logistics operations. He highlighted transformative measures essential for port optimization in an era defined by digitalization and sustainable infrastructure –areas that currently hold special significance for the north Mediterranean countries.

Escola Europea’s active involvement in international conferences like ICPFZ 2023 signifies the organization’s commitment to collaborating with southern Mediterranean countries and its commitment towards driving community building and development throughout the region. The continued partnerships aim to facilitate knowledge exchanges, foster innovation, and drive sustainable growth within the maritime transport industry, therewith contributing to the organisation’s mission of nurturing a sustainable and competitive maritime landscape.

Back to Basics: Blue vs. Green Hydrogen

Anyone who follows current events knows that we are currently in a race against time when it comes to offsetting the effects of global warming. Transport emissions are a key part of this race as, in today’s globalised society, they contribute significantly to the rises in temperatures throughout the globe. According to the International Energy Agency tracking report from 2022, transport emissions are responsible for roughly 7.7 Gt CO2 annually – a number that needs to drop to less than 6 Gt before the end of the current decade if we want to reach the Net Zero goal set by the UN.

From biofuels, to liquified natural gas, to electric batteries – the transport sector is currently exploring a variety of solutions that can be put in place to make transport cleaner whilst maintaining its efficiency. One such alternative fuel source is hydrogen – a lot of hype has been given to this fuel source in the industry – and this is why we chose it as the focus of our #BacktoBasics article this month.

What is hydrogen?

Most of us know the formula for the element – H2. We know it is colourless, has no taste or smell, and is highly combustible –we learned this in school. In recent years, research has helped us develop systems that can transform the heat generated by this element into energy.

Today, in many sectors of our society, hydrogen is already being used as a “clean” source of energy. Some such examples are:

  1. Fuel cell electric vehicles (FCEVs): FCEVs use hydrogen fuel cells to generate electricity, which then powers the vehicle’s electric motor. FCEVs have a longer range than battery electric vehicles and can be refuelled in a matter of minutes.
  2. Hydrogen internal combustion engines (HICEs): HICEs are like traditional gasoline or diesel engines but use hydrogen as the fuel source. HICEs produce lower emissions than traditional engines, but not as low as fuel cell electric vehicles.
  3. Hydrogen-powered buses: Several cities around the world have implemented hydrogen-powered buses in their public transit systems (including London (England), Aberdeen (Scotland), Cologne (Germany) and Tokyo (Japan). These buses emit only water vapor and have similar range and refuelling times as FCEVs.
  4. Hydrogen-powered trains: Hydrogen fuel cells are being used to power trains in some areas, such as Germany and the UK. These trains emit only water vapor and have lower noise levels compared to diesel trains.

When thinking about the freight transport sector, we can see that we already have:

  1. Hydrogen fuel cell trucks: Several companies are developing fuel cell-powered trucks for cargo transport (including Toyota and Kenworth). These trucks have a range of several hundred miles and emit only water vapor.
  2. Hydrogen-powered forklifts: Hydrogen fuel cells are being used to power forklifts in warehouses and distribution centres. These forklifts have the advantage of emitting only water vapour and refuelling quickly, reducing downtime compared to battery-powered forklifts.
  3. Hydrogen-powered trains: hydrogen fuel cells are being used to power trains in some areas. These trains could potentially be used for cargo transport as well, with the added benefit of emitting only water vapour and having lower noise levels compared to diesel trains.
  4. Maritime transport: There are several projects underway to develop hydrogen-powered ships for cargo transport. For example, the Hydrogen Energy Supply Chain project in Japan is developing a hydrogen-powered supply chain for liquefied natural gas transport.
  5. Air cargo transport: While hydrogen is not yet being used for commercial air transport, there are several projects underway to develop hydrogen-powered aircraft. For example, Airbus is developing a concept for a zero-emissions aircraft powered by hydrogen fuel cells.

Green or Blue (or both?)

Hydrogen is a clean-burning fuel that can be produced from a variety of sources, including natural gas, biomass, and renewable energy. Blue and green hydrogen are two different types of hydrogen production methods that have distinct differences in terms of their environmental impact and production processes;

  1. Green hydrogen

It is produced through the process of electrolysis, which uses electricity to split water molecules into hydrogen and oxygen. The electricity can be generated from renewable sources such as wind, solar, and hydroelectric power. Since green hydrogen is produced using renewable energy, it is generally considered a clean fuel that has a low carbon footprint. It can be used in fuel cell vehicles, which are powered by hydrogen and emit only water vapor as a by-product. The use of green hydrogen in transport can significantly reduce greenhouse gas emissions and contribute to a more sustainable future.

  1. Blue hydrogen

It is produced from natural gas using a process called steam methane reforming (SMR). During SMR, natural gas is heated with steam to produce hydrogen and carbon monoxide. The carbon monoxide is then converted into carbon dioxide, which is captured and stored underground. This process is known as carbon captureutilisation, and storage (CCUS), which helps reduce greenhouse gas emissions by storing carbon dioxide instead of releasing it into the atmosphere. While blue hydrogen is considered to have a lower carbon footprint than conventional natural gas, it still relies on fossil fuels, making it less environmentally friendly than green hydrogen.

Both green and blue hydrogen can (and are) be used in fuel cell vehicles. However, since green hydrogen is produced using renewable energy, it is considered the most sustainable and environmentally friendly option for transport today. Blue hydrogen, on the other hand, is considered a transitional fuel that can help reduce greenhouse gas emissions while the world transitions to a fully renewable energy system.

According to a report by the International Energy Agency (IEA), the use of blue hydrogen in transport can reduce greenhouse gas emissions by up to 30% compared to conventional gasoline or diesel vehicles. However, the report also notes that blue hydrogen should be used as a stepping stone to green hydrogen, which is the ultimate goal for a sustainable hydrogen economy.

Final thoughts

At the moment it is still unclear which hydrogen option the markets will favour. Blue and green hydrogen are essentially depictions of two different types of hydrogen production methods that have differences in terms of their environmental impact and production processes. Most experts agree that “green” is the better option as it appears to be a net-zero fuel. It is unfortunately also true that green hydrogen is the most expensive one to make (Forbes estimated the production of green hydrogen at $6/kilogram – 2-3 times more expensive than blue hydrogen). Thus, it can be said that most industry members would opt for the blue option – at least in the short term. While blue hydrogen can help reduce greenhouse gas emissions, green hydrogen remains the more sustainable and environmentally friendly option for transport. So, while we work on making green hydrogen more accessible to the markets, we can remain satisfied with the knowledge that even with blue H we are keeping pace with the global warming race. After all, the use of hydrogen (any hydrogen) as a fuel in transport can significantly reduce greenhouse gas emissions and contribute to a more sustainable future.

Sources:

The Escola Europea is committed to sustainability and digitisation

The Executive and Steering Committees of the Escola Europea met in Barcelona on 26th May for its annual meeting to talk about sustainability.

On 26th May, the Executive and Steering Committees of the Escola Europea met in Barcelona under the presidency of Damià Calvet. After two years of online meetings, this year 2022 the meeting was held in hybrid format on the premises of the Port Authority of Barcelona.

The meeting was attended by Silvio Ferrando representing the ports of Genoa; Luca Lupi on behalf the ports of Rome; Mario Massarotti as a representative of Grimaldi Group; Matteo Catani and Antonio Pedevila in the name of GNV; Catalina Grimalt for the Port of Barcelona and Eduard Rodés and Concha Palacios for the Escola Europea.

In the balance of activities for the financial year 2021, the recovery of face-to-face activities and the favorable evolution of the year 2022 stood out, in which the number of students and courses has grown more than in 2019. The activities related to international projects have also grown and the presence of the Escola Europea in the Mediterranean countries has been consolidated.

 

It is worth highlighting the commitment to the portvirtuallab.com platform, which has meant a technological leap in the development of training models for the digital transition, based on virtual simulators. This places the Escola as a benchmark for innovation in the field of digitalisation in the logistics-port sector.

A second innovative element has been the creation of a sustainability office specialized in the port logistics sector.  Managed by specialists in sustainability management, its objective is to provide support to companies that need to draw up their sustainability reports.

Training, digitalisation and sustainability make up the basic axes of development of the Escola Europea, which this year reaches its 15th anniversary. With a huge activity in Spain and Italy the schools presence has increased in importance across the Western and Eastern Mediterranean.

 

Sustainability

The Escola and the Port of Barcelona get closer to sustainability

The second decade of the 21st century has brought sustainability into the limelight in many ports of our globalised world. The port of Barcelona has already been involved in numerous activities related to sustainability over the years, and in March 2022 it has selected the Escola Europea to officially serve as the Technical Office of Port Sustainability – with a strengthened effort to reach the goals set by the Spanish and European authorities that aim to curb transport emissions by 2030.

The passing of the Law on State Ports in 1992 by the Spanish government marked the beginning of the creation of the Port Authorities, the establishment of a new model for the organisation and operation of the port systems and eliminating the figures of the Autonomous Ports and the Port Boards. One year later, the constitution of the Port of Barcelona as a single Port Community was established. Since then, every 5 years the port has developed a Strategic Plan with the goal of revising the port’s primary goals and strengthening the port community every half a decade. In the latest Strategic Plan, the Port of Barcelona has emphasized the increasing need to bring sustainable transport solutions to the forefront of the port’s activities, and therewith put Barcelona in the frontlines of modern ports.

The III Strategic Plan, which covered the period from 2015 to 2020, characterised at the Port of Barcelona (APB) by the approval of two framework documents for the Port Community’s action and governance of the Port Community: the APB’s 3rd Strategic Plan 2015-2020, which, together with growth and competitiveness, placed sustainability as one of the three central axes for framing all aspects of the business. On the other hand, the approval in 2016 of the Sector Sustainability Plan in 2016, which introduced a new way of approaching sustainability, engaging with it and of relating to the organisations of the Port Community by collecting and processing of non-financial information based on the development of benchmark indicators. In addition, the Port of Barcelona has been a pioneer in incorporating the sectoral view directly into its reporting and by linking it to the 2030 Agenda and the United Nations’ Sustainable Development Goals.

As such, the Port Authority opened a tender for the creation of a Technical Office of Port Sustainability of the Port of Barcelona, which it awarded to the Escola Europea – Intermodal Transport in March of 2022. The contract itself has a duration of 1 year, with the potential for further extensions thereafter.

The Escola’s services will be strengthened and configured in line with sector trends and the Port of Barcelona’s strategic plan, including the promotion of the intermodal transport and energy transition courses as part of the environmental sustainability actions of the port authority; the creation of a Training and Employment Working Group that will promote social sustainability among the different actors of the port community; and finally expanding the new Port Virtual Lab interface to showcase digitalisation efforts in the area.

The Escola and the Baku Port cement their collaboration

On the 10th of March, the director of the Escola Europea – Intermodal Transport Eduard Rodés signed a Memorandum of Understanding (MoU) with the Head of the Baku Port Training Center Orkhan Adigozalov.  

The agreement aims to share the Escola’s unique and proven model of experiential training in logistics and intermodal transport with the Training Centre at the Port of Baku.

Located on the shores of the Caspian Sea, the port of Baku is the main maritime gateway to Azerbaijan. With the Escola’s continued efforts to extend its network of educational centres across the Mediterranean Sea, an expansion further into neighbouring sea ports seemed logical. Over the next few years, the Escola and the Baku Port training centre will work together to develop an institutional development strategy, which will help the port turn into a regional training and logistics centre, helping the Escola spread its vision of practical and experiential training that fully prepares the professionals of tomorrow.

Prior to the signing of the agreement, on the 9th of March, representatives from the Port of Baku took part in a course that focused on sustainability and “Green Ports”, which was designed and taught by the Escola and specialists from the sector: Eduard Rodés – the director of the Escola, Xavier Sabaté – the head of environmental projects at the Port of Barcelona, and Oriol Vilaseca – an environmental consultant. The goal of this course was to present the strategies of the Port of Barcelona and its Logistics Community related to sustainability and the environment; to analyse new visions concerning the management of ports from the perspective of sustainability and any steps that ports could take tp transform strategies into action; and to analyse the position of the Port of Baku to lead the transport corridors of the Caspian region by making them competitive and sustainable.

In October of 2021 a delegation from the Port of Baku travelled to Barcelona to discover the port’s strategy. It is during this visit that the participants familiarised themselves with the work of the Escola, which gave rise to this blossoming collaboration.

For more information, you can contact the Escola.

Hydrogen

A Spotlight on Hydrogen Fuel Cells

Written by Lidia Slawinska

Written by: Lidia Slawinska, Digital Communications

Over the past decade hydrogen has really taken centre stage in the search for an alternative fuel for maritime transport. Different applications of the gas have been researched and trialled in various maritime scenarios. The most recent and most successful case in recent years, without a doubt, has been the development and implementation of hydrogen fuel cells. In this #DidYouKnow article we take a look at this technology and consider its impact on the maritime industry.

Hydrogen Fuel Cells

Fuel cell technology has been around since the early 1800s. A fuel cell is an “electrochemical energy conversion device that was invented in 1839 by William Grove to produce electricity by combining hydrogen and oxygen into water” (GenCell Energy). Like regular batteries, fuel cell batteries can convert potential energy into electricity, and result in heat as a by-product. In the 1950s, in the heart of the Cold War arms and space races that took place between the USA and USSR, liquid hydrogen was explored as a powerful fuel and finally used to send rockets into space – taking it one step closer towards the hydrogen fuel cell.

In recent years this technology has been considered for freight transport journeys. As more and more research is being done on different sustainable alternatives to fossil fuels, fuel cell technology took centre stage. Using the example of green hydrogen to power ships, researches have adapted Grove’s traditional concept to be able to use hydrogen’s energy and convert it to electricity and heat, and therewith power the vessels’ propulsion mechanisms. In other words, hydrogen fuel cells combine hydrogen with oxygen, and therewith produce electricity. The hydrogen is sourced from a tank that is built into the cell, where it then reacts with oxygen that is “sourced” from air. The resulting chemical reaction produces electricity, water and heat. The water and heat are released as water vapours, and thus are considered zero-emission by-products.

The electricity provides continuous energy to the ships as long as the cell is fed with the “fuel” – in this case hydrogen gas. This proves to be an advantage over conventional electric batteries that have a fixed shelf-life or need recharging . Fuel cells generate very little noise pollution, can easily be modified for different-sized vessels, and have no distinct moving parts. There is a general consensus that the vast majority of vessels could easily be retro-fitted with this technology – therewith lowering the carbon footprint of the shipping industry.

Hydrogen Sourcing

 It is not difficult to understand why scientists are excited about such capabilities of hydrogen – as it is the most abundant element on our planet. However, it is rare to find it in its isolated form. It can found in water and other hydrocarbon chemical elements such as methane. In order for it to be used in hydrogen fuel cells, the element needs to first be isolated through chemical, biological or solar-driven processes. (An interesting side-note is that nearly 85% of hydrogen is already being produced daily in fossil fuel refineries during the processes of removing sulphur from gasoline).

There are sustainable sourcing solutions utilised by some companies in the world. Hydrogen can be produced using biogas, or through electrolysis that uses electricity generated by solar or wind power. Relying on such sourcing alternatives will help keep CO2 emissions low from the entire hydrogen fuel operation in the transport sector.

Sustainable Shipping

One kilogram of hydrogen has the same energy density as a gallon of diesel.

At the end of the noughts, the European Commission began to direct its policies more actively towards sustainable transport amid growing concerns related to climate change. In the 2008 European Strategic Energy Technology Plan, hydrogen and fuel cells were singled out as the new technologies that would help the transport sector achieve a 60-80% reduction in GHG by the middle of the century.

Because hydrogen fuel cells already exist, and don’t require a huge investment of shipowners to install them in vessels, they are being considered as a fore-runner in the field. William Alan Reinsch, Scholl Chair in International Business estimates that “hydrogen fuel could replace 43 percent of voyages between the United States and China without any changes, and 99 percent of voyages with minor changes to fuel capacity or operations.”

Currently there is already one hydrogen powered ship – the Energy Observer – carrying out a six-year trip around the world. In its virgin voyage, the ship uses solar panels, wind and wave turbines to power the process. Its success coud determine whether the method could prove efficient and effective for various ocean voyages.

Challenges to Hydrogen

It wouldn’t be prudent to assume that hydrogen was the faultless solution that would eliminate all GHG within the shipping industry – as it has some challenges and complications. Hydrogen gas is extremely flammable, and its chemical properties mean that it can burn at both low and high concentrations when combined with oxygen in an uncontrolled reaction. Shipowners need to make sure that important safety measures are in place to lower the risk of such explosions during their transport and storage.

An added complication that would need to be addressed is that the element (even in its liquid form) is very energy dense. This means that the fuel cells themselves take up more volume on larger vessels – potentially lowering the profitability of the voyages themselves for ship owners (with diminished cargo spaces on the vessels themselves).

Finally, the cost of the type of hydrogen sources is also important to take into account. Hydrogen Fuel Cells use so-called “Green Hydrogen” (there are three types – Gray, Blue and Green, with Green being touted as the most ecologically sourced) – which currently is the most expensive hydrogen available on the market. For the shipping industry to be truly sustainable, this is the hydrogen type that would need to be used, and therefore its costs would need to be adjusted to make it appealing to the private sector.

A Greener Future

There is no doubt that the path ahead for the shipping industry is difficult and full of unknowns. There is no one-answer-fits-all solution to try to eliminate GHG emission from the oceanic trades. Different solutions are currently being tested and are being developed at astonishing rates. More than one would need to exist for the goals set by the IMO for 2050 to be reached.

Hydrogen Fuel Cells are proving to be very effective and, if embraced by the shipping industry, could prove integral towards the goal of zero emissions maritime transport. Even though no giant vessels have embraced the technology, smaller ferries and ships have begun operating in the USA, France, Norway and Belgium. Moreover, “oil major Royal Dutch Shell has invested in several hydrogen production projects in Europe and China, arguing that hydrogen is “advantaged over other potential zero-emissions fuels for shipping,” as attested by William Alan Reinsch – a huge sign that even the traditional fuel sourcing companies are coming on board.

There is still a long road ahead, but with the continuous innovations from scientists and financial contributions from big players in the industry, the goal of achieving global net zero emissions by 2050 could, perhaps, be attainable. Hydrogen fuel cells could be responsible for a significant step in that direction.

Sources

Container terminal at the Port of Long Beach

Zero Emissions future – the case of the Port of Long Beach

Written by Lidia Slawinska

Written by: Lidia Slawinska, Digital Communications

A net-zero operating terminal is a milestone that most ports around the globe are working towards – as it would mark a significant step towards sustainability. This summer, one port has achieved this remarkable step and begun operating a container terminal that is equipped with nearly all electric and zero-emissions equipment. Already news sources are reporting it as one of the most technologically advanced cargo terminals globally. We are, of course, talking about the Port of Long Beach – and the Long Beach Container Terminal at Middle Harbor (in California, USA) – and we wanted to take a look at it in this #DidYouKnow article.

A decade in the making

The port begun work on the project in May 2011, with an initial estimated cost of $1.5bln. The project was divided in three distinct phases. The first phase was completed in 2016, after which 151 acres opened for business. The next year the terminal was expanded to reach 191 acres, and the final phase of the project ended in July 2021. The Container Terminal now boasts with 300 acres in size, has a completed container yard, a modern administration buiding and an on-dock rail yard to allow for intermodal traffic. The concrete wharf can also receive and process three massive ships at once, with fourteen gantry cranes able to service the shoreline.

The terminal is expected to expand through the North Gate Expansion by 2025, adding an additional 3 acres to the already impressive surface area of the facility.

Net zero emissions

It is doubtlessly difficult for ports to make sure that their operations are carbon neutral – and in line with the global environmental agencies recommendations for the protection of our climate. How did the Port of Long Beach achieve its net zero emissions?

First of all – it ensured sufficient on-shore power supply stations on the berths. All of the vessels are now able to shut down the diesel engines while stationed in port and can connect to the local electrical grid.

Secondly, during the construction it was ensured that all of the major structures were built with features that allow them to save both electricity and water, meeting the American Leadership in Energy and Environmental Design standards.

In-terminal operations are carried out by automated guided vehicles that rely on transponders in the asphalt to manoeuvre around the containers. These vehicles are battery-operated and are also capable of recharging themselves.

The final aspect of the Californian terminal is the emphasis that has been placed on faster truck turnaround times, which further reduced the port’s emissions.

Intermodality at the forefront

There is no doubt that one of the aspects that port terminals can focus on is to increase their intermodal capacities – as bringing trucks off the roads would significantly lower the GHG emissions produced by their diesel engines. The Port of Long Beach was not an exception, and in its construction has included a intermodal rail yard that includes 70,000ft of tracks. “There are 12 tracks, and each is almost a mile long,” says Thomas Baldwin, director of project management at the port. “There are four storage tracks, and eight working tracks. Five dual cantilevered gantry cranes with room for a sixth. It’s one of most modern railyards ever built, with 1.1 million-TEU capacity ” (August 20th, 2021: ENR). In the near future, the port is also planning to expand its on-dock rail capacity to 35%, acknowledging that one fully stacked train can replace up to seventy-five trucks on the road – further alleviating the pressure on our environment.

Innovating into a clean energy future

Becoming a green port is no small feat. There are many innovative ports in the world that have already incorporated significant changes to their operations to lower their emissions and thus conform with international standards. The Long Beach Container Terminal can certainly be used as an example for other ports to follow, as it shows the signs of being the world’s first “all-electric, zero-emission mega terminal” and “will [help the port] increase [its] throughput, improve air quality and maintain [its] status as a leading gateway for trans-Pacific trade” – as was highlighted by Maria Cordero, the executive director of the port (August 23rd, 2021: Splash 247).

Sources

Clean fuels, electrification, water and hydrogen – How are ports handling energy transitions?

Written by Lidia Slawinska

Written by: Lidia Slawinska, Consultant

Over the past few months, a lot of our articles have focused on sustainable solutions in intermodal transport – whether they were connected to port operations, maritime transport or port-railway solutions. Focusing on alternative and clean energy solutions is vital, in particular in light of this summer’s heat waves, floods, and other weather phenomena which are gaining in strength every year. The European Union has recently renewed its dedication to the Green Deal, committing itself to substantially lowering the carbon emissions of the EU by an extremely ambitious 55% by 2030, and to eliminate net emissions by 2050. Taken together, all of this suggests that sustainability needs to take centre stage in all of our transport operations if we are to meet those goals and help protect our Blue planet.

The Escola is committed to promoting sustainable transport and incorporates its principles to all of its courses – and this is why this month we wanted to touch upon one of those. The upcoming course on Energy Transitions in Ports will take place in October of this year, and will aim to raise awareness and provide information to the management and technical staff of port authorities that are part of the MEDPorts Association on specific aspects related to energy transition in ports. However, when we talk about said “energy transition”, what do we mean?

The current climate

According to some scientific estimates (2019: The Atlantic), it is likely that sea levels will rise considerably by the end of this century, therewith putting 14% of the earth’s major ports susceptible to flooding and erosion. This is near-universally explained by the rising global temperatures, which contribute to a faster melting of the ice caps.

Maritime transport currently is responsible for about 80% of freight transported globally (by volume). As such, nearly 3% of CO2 emissions are sent into the atmosphere alone – a percentage that has increased by more than 30% in the last two decades. This characteristic of the current “golden age of oil” has had a detrimental effect on our climate already. Continuing on this same trajectory will increase this number to nearly 17% of all global emissions by the middle of our century – therewith further hastening the rise of the sea levels.

All of this suggest that leading ports need to take action now and adapt their infrastructures to offset any threats that may arise from the rising sea.

Clean fuels

When thinking about the prospect of energy transition in ports, the fuel used by the visiting vessels is central. Ships – whether they are cruises or container-carriers – need to stay in the ports they visit – to load and unload, and to re-supply. This requires the ships to stay powered whilst these operations are taking place, and ports have had to design alternative electrical systems of On-Shore Power Supplies (OPS) to lower their emissions in-port. Many ships have already started to run on new alternative fuels that have considerably smaller carbon footprints – including LNG (Liquefied Natural Gas), hydrogen, ammonia and ethanol.

The vessels that operate within a port – the ones transporting the pilots or tugging the larger vessels entering the harbour – would also need to be modified. Some ports have already taken initiative such zero-emission crafts – one example being the Hydrotug boat under construction in the Port of Antwerp.

This transformation of the vessels, which also includes the capacity to be powered by the on-shore electrical or gas-powered systems, would need to be accelerated for the industry to become greener.

Electrification

As hinted in the previous section, electrification is a vital process in the energy transition of ports. Making sure that the modern ports have adequate electric facilities and technologies in place, be it through either OPS, electrified wharfs, or electric ferries or vessels that perform other port operations.

Energy production

Trying to make sure that the energy transition in ports is not a double-edged sword, which then puts increasing pressures on existing power infrastructures in their hinterlands (and therewith continue to leave a significant carbon footprint), ports also need to think about using their vicinities to generate their own power. Turning seawalls into energy producers, or having offshore wind turbines can significantly increase the Gigawatts that the ports will depend on – therewith limiting the strain on the traditional infrastructures. It is vital that ports transform their mindset and develop new technologies that can create electricity from solar power, marine power, or bioenergy. Ports will need to become electricity producers that depend on a multitude of sources to supply their operations, whilst making sure that they are doing so with limited or no emissions to comply with the emerging global regulations.

In fact, some estimates now say that by the middle of this century, industrial ports will have the capacities to generate ten times more than today. This data was presented in the DNV GL’s study on Ports: Green Gateways to Europe. The report also stated that the energy transition methods that many ports are either considering or already implementing could easily account for the increase in port activities – traffic has been consistently increasing as globalisation has driven the economies forward. In order for this to take place consistently, the report recommends 10 specific transitions that would need to take place:

  1. Electrification of port-related activities
  2. Fuel switch for maritime transport
  3. Electrification of industry
  4. Integration of offshore wind
  5. Energy system integration
  6. Hydrogen as a feedstock and energy vector
  7. Phase-out of fossil-fuelled power plants
  8. Carbon capture and storage
  9. New regulations
  10. A circular and bio-based economy

(Source: Offshore Energy)

Final thoughts

Transforming our current energy infrastructure has taken centre stage is both our political and social dimensions. The transport sector has also taken note, and many private and public entities have already taken (sometimes) drastic steps to try to lower the carbon footprint of transport. Ports, in particular, have taken note – knowing that they represent the connection between the sea and the land, and therefore need to lead in the sustainable revolution and guide both land, rail and sea transport operators on the path towards decarbonisation.

Automation and innovative technologies already exist that can help ports become energy-efficient. With new laws and guidelines already in place, including the Paris Climate Agreement, the European Green Deal, and the latest EU 2030 Climate and Energy Framework, the path ahead for ports is doubtlessly difficult and winding, but righteous. Smart Ports and Green Ports are now becoming synonymous with the Ports of Tomorrow. The journey forward is green, and to survive, ports need to make sure that they on it.

Sources:

Sustainability

Sustainability of transport and logistics in the Mediterranean

Written by Eduard Rodés, Director of the Escola Europea

Written by Eduard Rodés, Director of the Escola Europea

The concept of sustainability, although open to many interpretations, can be understood as based on two elements. The first is the transport network, which is, at European level, fundamentally structured by the work carried out in recent years by the European Commission (EC) on the Trans-European Transportation Network (TEN-T) and which necessarily conditions that of its neighbouring countries, and therefore by extension Mediterranean countries. The transport network is one of the three networks that are essential for economic and social development. The second element is made of the energy and telecommunications networks, which are elements of the digitalisation process. The transport network is dependent on the other two, both in terms of efficiency and sustainability.

The efforts to advance the concept of sustainability are based on the approval by the United Nations (UN) Assembly of the 2030 Agenda in September 2015, structured by the 17 Sustainable Development Goals (SDG). Sustainable development cannot be understood without simultaneously taking into account the interrelationship between the different goals. Spending more time trying to scrutinise the aspects related to Goal 13 on climate change, or Goal 9, which deals with industry, innovation and infrastructure in this article would not be wise, as they depend to a broad extent on the other 15 goals and their mutual interactions to reach the targets. It is most likely that the problem to solve is not pollution or sustainability but the consequences we are facing from our actions in the past two centuries. The underlying problem is our way of life and the habits we have acquired. This is where the COVID-19 pandemic has forced our societies to look at themselves in the mirror. It can now be understood that another way of organising our societies is possible and that everything is more ephemeral and fragile than previously thought.

Sustainability has become one of the critical factors in shaping the policies of all countries. The United Nations, with its Agenda 2030 initiative, and the European Union (EU) with the Green Deal, has set the course for a low-carbon society in 2050. The COVID-19 has further strengthened the need to carry out this sustainability revolution. The road ahead will not be easy and will inevitably lead to drastic changes in the configuration of the transport and logistics sector.

A World in Transition

COVID-19 appeared in the middle of a period of strong transition. Time will tell if there is a change of cycle, leaving behind the silicon and information period, and moved towards robotics, artificial intelligence, and simulation models in virtual environments. Now, the systems we are developing are prepared to aggregate much more data than we have ever had. The programmes can analyse it and simulate scenarios on which to base decisions, much more accurately than those we would have been able to make without their help. This transition is taking place in the three networks previously identified (transport, energy and telecommunications) and as a result of their evolution.

The Energy Transition

The Mediterranean, like the rest of the world, faces the need to seek out renewable energy sources. The consumption of hydrocarbons and energy produced with fossil fuels is reaching the end of the cycle. Governments face the need to seek alternatives that will maintain economic activity while reducing the environmental impact of emissions. Energy efficiency and the progressive penetration of renewable energies must enable economic reactivation in the short term and, at the same time, allow for the consolidation of the value chain associated with their deployment. They are also the pillars of decarbonisation, which gives a boost to the rest of the sectors while improving business and industrial competitiveness through a downward price path.

The energy transition also promotes the implementation and development of new technologies, which are fundamental for managing the demand for electricity and the supply of security in a 100% renewable system, in an industry segment in which the Mediterranean has the potential to acquire leading positions.

The development of hybrid plants allows for more flexibility. Different types of technologies can coexist in the same system, which can already be seen, for example, in wind power plants utilising solar panels. In such cases, the energy can be distributed using the same connection point and the access capacity already granted, provided that the technical requirements are met.

According to the Observatoire Méditerranéen de l’Energie (OME), “it is estimated that energy demand per capita will increase by 62% in the Southern and Eastern Mediterranean countries by 2040 (using 2018 as the reference year). The Mediterranean region is also experiencing intense industrialisation and growth in tourism, putting additional pressure on available energy resources” (UfM, 2019).

These regional challenges, if adequately addressed, can be turned into business opportunities that can contribute to a sustainable energy transition. The Mediterranean is rich in renewable energy sources, such as wind, sun and water. Therefore, it has the potential to promote the transition to more sustainable and low-carbon energy systems. There is also the potential to increase energy efficiency through the development of new technologies that allow, for example, energy-saving and storage. Moreover, the development of gas and energy transmission interconnections will lead to the progressive integration of energy markets in the region, which is an opportunity for countries to better address the energy security challenges.

The problem is addressed from various perspectives depending on the “community” from which it is analysed. The most visible today is the city, which is currently undergoing a process of significant changes due to the evolution of distribution caused by the rapid growth of e-commerce (further accelerated by the COVID-19).

Ports have initiated determined shifts towards an energy transition in their territories. This has led to the emergence of professions such as officers in charge of the energy transition. The working programmes go through the different elements that make up energy consumption and their sources of production.

The first issue is a legislative framework that has been developed to force the transition while maintaining a certain rate of deployment. A second point relates to savings and efficiency policies, as these are aspects that can be applied immediately and with excellent results if used correctly. A third issue relates to energy sources, and significant changes have already been made in recent years in this regard. Gas has played a leading role in the last ten years, and during this period gas-powered ships have been built, supply systems for trucks have been developed, and some tests with port machinery have been established.

One of the critical aspects that condition the implementation process of low-sulphur fuels with low CO2 emissions is the possibility of the Mediterranean being declared an Emission Control Area (ECA). This is one of the most rapidly changing scenarios for the future. The Mediterranean will be an ECA area no later than 2024, as decided at the meeting of the Contracting Parties to the Barcelona Convention (COP21) held in December 2019 in Naples. The agreement will lead to the presentation of the proposal at the Marine Environment Protection Committee (MEPC) of the International Maritime Organisation (IMO) in 2022.

This is a significant challenge for the shipping companies, which have been working on the emission reduction aspects for years. In 2018, the IMO adopted Resolution 304(72) on the initial strategy for the reduction of greenhouse gas (GHG) emissions from ships, which set a reduction of 40% by 2030 and 70% by 2050. The lifespan of a vessel is approximately 30 years, so times should be calculated taking this into account (IMO, 2018).

Today’s large fuel families are also in transition. Liquefied natural gas is evolving towards biomethane and hydrogen, biodiesel to second and third-generation biofuels, liquid petroleum gas to biogases, and bioethanol to synthetic ones. In all cases, it will be necessary for ships to dedicate more space to storage, as the energy power is lower, and they will need a higher quantity for a result similar to what is attained using traditional fuels.

Maritime transport in the Mediterranean is considered to be “Short Sea Shipping”, which in turn represents 80% of the world’s fleet and one of the main contributors to air quality in port cities. Ports in the Mediterranean are generally located in big cities and operate alongside them, seeking a balance between the advantages of having a port that provides a service and the disadvantages of port-related operations. What is clear is that Short Sea Shipping is configured as a network in the area in which it operates. Ships from the Southern Mediterranean work with the countries of the North and vice versa. Therefore, the regulations that will be implemented will necessarily affect practically all operations. It seems clear that governments will use coercive measures to force a rapid move towards carbon-neutral solutions.

At present in Spain, gas is at the forefront with a prepared infrastructure that will make it possible to reach 2035 without the need to invest in this concept. For operators, it is profitable because they must bear a significant initial investment to adapt their ships. Still, the cost of fuel is more economical, allowing a return on investment in a relatively short time.

In recent months, hydrogen has been gaining ground as an alternative to traditional fuels in maritime transport for several reasons. It is abundant and available everywhere. In a fuel cell, the generated waste is O2 and water. As a fuel, it has zero emissions, is not toxic, is not a greenhouse gas, can be produced from renewable resources, and is a source for other fuels such as e-fuels and blue fuels. We will have to get used to new nomenclatures such as “Green Hydrogen” produced from renewable energies or “Blue Hydrogen” generated from gas, which generates CO2 in the production process that is captured and stored in underground deposits. Hydrogen has the disadvantage of being difficult to store and transport, and involves complementary elements such as ammonium, ethanol and octane. Ammonia stands out as it is a substance that does not contain carbon in its molecule and therefore does not generate CO2 emissions during its decomposition reaction, besides being the second most-produced chemical compound worldwide after sulphuric acid.

Research is currently underway for the subsequent decomposition of ammonia for its use with catalysts. These include graphene, which due to its characteristics could be an ideal candidate. From a Mediterranean point of view, it is clear that energy sources based mainly on solar energy and gas provide a significant competitive advantage, as the changes that are expected to occur are relatively rapid.

The Digital Transition

To understand what is happening in telecommunications systems, it is worth analysing the role that they have played during the pandemic. It is no longer a question of seeing how technology evolves in the field of communications and how it will affect us. It is about realising that society has been re-structured around a different way of making and maintaining relationships, driven at this time by the pandemic, which, we all assume, will remain as a new form of interaction. The pandemic has accelerated the digital transition, thus reconfiguring human and environmental relationships. At the expense of proximity, some interactions have been enhanced and our environmental impact reduced. During this period, a reasonably high level of educational activity has been successfully maintained. International projects have been supported, many people have teleworked, and the reality is that it seems that quite a few will continue to do so, even if only partially, for the foreseeable future (if not forever). Interestingly, none of this would have been possible without a significant development in digitalisation.

Two clear consequences of this pandemic have been the drastic reduction in mobility and the exponential increase in e-commerce and door-to-door sales. All of it was possible, based on a working system supported by telematics and the digitalisation of documentation and associated information. Everything that was being developed in the world of transport has accelerated rapidly, and where before everyone was putting obstacles in the way, now everyone is looking for solutions. If something could be done telematically, it was done, whether it was administrative boards or family meetings. Some changes will be more disruptive, such as the 5G technology that will allow exchanges of information in real time. This is understandable as there will be no latencies in communications. This is linked to the important development of robotic processes.

Another essential aspect linked to the energy network is its management and use. The “Smart Grid” concept is based on a form of efficient electricity management that uses computer technology to optimise the production and distribution of electricity, to better balance supply and demand between producers and consumers, and to improve the security and quality of supply following the requirements of the digital age. Better energy management will make it possible to create energy communities that will self-manage their production and consumption. Initiatives in this direction are being considered in the Port of Barcelona itself, but the idea goes further. This capacity for knowledge and management that a computerised world allows gives rise to different systems of governance, dependence and resilience. Fortunately, it is not a question of technologies that are difficult to access for the countries of the Mediterranean basin, which already have the necessary energy and know-how.

Digitalisation has a fundamental impact on transport. Advances in digital mapping systems, fleet and transportation management and the development of mobility management networks are transforming its landscape. Each transport system has its network. For land transport, the European Commission is working with the “Intelligent Transport System”, which enables an integrated system of information for traffic, safety, efficiency and sustainability. In short, it is working on the efficient management of the transport network based on the mass collection of data and interaction with the vehicles and drivers themselves.

In the maritime world, the Safe Sea Net, the vessel traffic monitoring in EU waters, managed by the “European Maritime Safety Agency”, is gaining importance. Through it, it is possible to monitor the movement of ships in the Mediterranean, which in turn makes it possible to control environmental aspects with the Clean Sea Net service. The European Commission has continued to improve single window systems with a new initiative born at the height of the pandemic, namely the “EU Single Window Environment for Customs”, which aims to facilitate the actions of the various public administrations involved in the clearance of goods entering and leaving the Union.

The ports have entered a period of digitalisation of all their operations and territories. The Internet of things (IoT) has made it easier to have a massive amount of information available, which in turn has made it possible to create a knowledge base on which to support much more efficient management systems. Ships have become sophisticated centres of sensors and data generators, producing and transmitting information from anywhere, often in real time. At the same time, advances in satellite communications are improving connectivity, allowing for massive increases in the volumes of data transferred at an ever-lower cost.

The Transition of the Transport Network

Finally, the transition of the transport network, supported by infrastructure and physical characteristics, and which include ships, trains and trucks, and structured around energy and information, needs to be addressed. When talking about transport in the Mediterranean, we need to discuss what the European Commission defines as the Motorways of the Sea and Short Sea Shipping. The Commission is considering the creation of a single European maritime space and, in a way, a Mediterranean space. For the Commission’s Motorways of the Sea Coordinator, Kurt Bodewig, the second pillar of the three pillars of its strategy stresses the need to ensure smooth maritime transport by improving multimodal connectivity, and thus ensuring better connections to the TEN-T corridors and better links with neighbouring countries (European Commission, 2020). This programme was launched in July 2020. It reflects the principles of the new legislature of the European Parliament adopted in June 2019, and the guidelines set by the President of the European Commission, Ursula von der Leyen, and the “Green Deal” programme, which is already setting the agenda for all the countries of the Union. It is important to note that the transport sector has been dramatically affected by the measures to contain the pandemic. The continuity of services has been ensured by transport workers under challenging conditions, showing that their role is critical in serving the essential needs of the population. By extension, the transport sector will also be crucial in supporting the post-COVID-19 economic recovery. This will particularly rely on the maritime and port transport sectors, with cruise, ferry and Ro-Pax operators being the most affected.

The sector faces two significant challenges: on the one hand, an evolution towards a concept of mobility as a service, which implies the integral management of information systems and means of transport oriented to the service of mobility; and, on the other, and always under the same principles, synchro modality and the physical Internet. These challenges are two new ways of visualising freight and passenger transport in which digitalisation, and clean energies will play a fundamental role.

Conclusions

The transitions in the energy, telecommunications and transport networks pose a disruptive change in the transport sector. Companies will have to reconfigure their strategies because they will have to change their means to adapt to the new situation, and management systems will be increasingly based on the digitalisation of operations, with artificial intelligence applying to their day-to-day activities. This brings about new opportunities for companies and the entry of new players from different markets. These new players may have competitive advantages over the rest, something that has already been witnessed in other sectors. Mobility will continue to be a fundamental element in development but will be adapted to a new reality that has emerged from the COVID-19 pandemic. Companies will have to reconfigure many of the professional profiles to adapt them to the new reality and to favour the new skills that will be required for a circular economy. These are what we call “Blue Skills”. Training to cope with this transition will be a crucial factor in facilitating that transition.

Energy prices will change very significantly. Solar energy will gain prominence, giving a competitive advantage to countries with deserts, where solar energy performance is very high. This is an excellent advantage for the Southern Mediterranean countries. These price fluctuations will doubtlessly cause instability for a certain period.

Sustainability becomes the driver towards economic recovery. The challenge of building a new sustainable society will mark the agendas and efforts of the post-COVID-19 generation, which is much more open and aware of the challenges that we will have to face.

It is too soon to know how the COVID-19 will affect public transport. It still seems that the pandemic will last for some time, although more hope has emerged with the emergency approvals of the new vaccines in some countries, which should help overcome it. Transport will change, above all, because it already had to change with or without the COVID-19. It will do so with environmentally friendly mobility and be more adapted to serving people and goods thanks to non-polluting fuels and artificial intelligence digitalisation processes. Change is on the Blue Horizon ahead, so let us sail towards it sustainably together.

For more interesting articles, you can head to the CETMO website: 

 

Bibliography and references

 

* Any use or reproduction of the information presented on these articles should be accompanied by a citation of CETMO and IEMed’s intellectual property rights.